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In the Reinforcement Learning (RL) paradigm one is interested in the study of agents and how they learn
by trial and error. The fundamental idea is that rewarding or punishing an agent for its behavior makes it
more likely to repeat it or discontinue it thereafter.

Section 1 introduces the standard RL problem and spotlights some of its associated issues before introducing
a workaround to the most pressing one. Section 2 delves into the workaround and explore a corresponding
method that we later implement1, namely Diversity Is All You Need (DIAYN) [1]. Finally, section 3 briefly
lay out where DIAYN stands in the RL literature before wrapping up the project with a few conclusive
remarks.

1 Introduction

1.1 The standard RL problem: reward and expected return
Let us further formalize this fundamental idea of reward and punishment. To that end, we introduce the
reward function R which is based on the current state of the world st, the action just taken at, and the next
state of the world st+1.

Figure 1: Interaction between the agent and the environment based on [2]

Then, leveraging this reward function, the agent aims at maximizing a return, a form of cumulative reward
over a sequence of states and actions in the world called a trajectory - for instance the sum of all yielded
rewards. Now, eventually, the RL goal is to select an agent’s policy which maximizes the expected return.

Let us formalize those remarks in order to get the RL optimization program when both the environment
transitions and the policy are stochastic. This will be useful in later sections and notably in 1.2 and 2.3.

1Our GitHub repository can be found here: https://github.com/remydeshayes/RL_DIAYN.git
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To get our expected return objective function for the RL optimization program, we need to introduce the
probability of a T -step trajectory τ which is given by :

P (τ | π) = ρ0 (s0)

T−1∏
t=0

P (st+1 | st, at)π (at | st)

where ρ0 is the start-state distribution and π the policy.
Hence, we get the expected return :

J(π) =

∫
τ

P (τ | π)R(τ) = E
τ∼π

[R(τ)]

Noting that, when the return is the sum of rewards we have :

R(τ) =
∑
t

R(st, at, st+1)

The RL optimization program

π∗ = argmax
π

J(π) (RL)

where J(π) is the expected return and π the policy

1.2 Intuition: learning without a reward function
Now, RL has known a wealth of successes with major hits in finance, industry and even gaming with famous
implementations such as AlphaGo, outmatching humans in a discipline long-believed to be too complex for
a computer program [3]. However, even though RL agents often have the appearance of humans - after all
they can drive, walk and even talk! - they generally lack the very human ability to autonomously learn skills
by exploring his environment and ultimately to wisely use those learnt skills when faced with an ulterior
goal-oriented task.

As a matter of fact, agents are most often designed and taught to perform complex behaviors using task-
specific extrinsic reward functions, as laid out in 1.1, which can sometimes be limiting. Indeed, as we
introduced earlier, it prevents them from having this sort of human ability to autonomously learn skills but
also because carefully designing a reward functions is complex and often requires significant effort let it be
regarding equations but also material and time related logistics - this can become unreasonable for a large
number of tasks.

In this context, the idea of introducing unsupervised RL agents surfaced. The intuition behind it is that the
agent now uses an intrinsic reward function - such as trying different things in the environment - to generate
its own training signals to acquire a broad set of task-agnostic behaviors.
Accordingly, the unsupervised RL paradigm has the desirable property to avoid the complex reward design
task while giving the agents the initial human autonomy ability we discussed earlier.

2 Diversity is All You Need - [1]

With the principles we introduced in part 1.2 in mind, we now explore an unsupervised RL framework laid
out by Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz and Sergey Levine in [1].
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2.1 Meeting the unsupervised RL paradigm challenge
The challenge of such unsupervised method is to yield a great variety of distinct and useful skills that alto-
gether explore a substantial share of the state space.

To meet this challenge and yield useful skills, paper [1]’s authors assume that the skills should be trained in
order to maximize the exploration of the possible behaviors’ set.

In that regard, their proposed method relies on three main principles :

1. The skills must be distinguishable i.e different skills visit different states

2. States - and not actions - are used in order to distinguish skills, this is important because some actions
does not affect the environment and thus are not visible to the observer

3. Finally, as distinguishable does not mean diverse, the method should allow to learn skill that are as
random as possible in order to ensure this diversity need

Using the notations introduced in section 1 i.e S is the state, A is the action space and a skill is a policy
π conditioned on a latent variable Z ∼ p(z), we now explore how the authors succeeded in enforcing those
conditions through maximizing the following information theoretic objective with a maximum entropy policy:

Program objective

F(θ) ≜ I(S;Z) +H[A | S]− I(A;Z | S) (Obj)

where I(·, ·) is the mutual information and H(·) the Shannon entropy.

The mutual information quantifies the amount of information obtained about one random variable through
observing another random variable. Therefore, the first term I(S;Z) enforces the first principle by indicat-
ing that the skill can be inferred from the states visited. Similarly, by subtracting the mutual information
between skills and actions given the state, the third term ensures that the second principle is met.
Finally, the entropy of a random variable being the average level of uncertainty inherent in the variable’s
possible outcomes, the second term is the amount of uncertainty that remains in the action after the state is
known thus ensuring that the third condition is met - p(z) is seen as a mixtures of policy, thus maximizing
the entropy of this mixture policy.

Acknowledging that the mutual information is generally intractable [4], we recall the following result:

I(X;Y ) = H(Y )−H(Y |X)

where X and Y are 2 random variables.

This result yields a new objective form that the authors will leverage in their optimization procedure :

F(θ) = H[Z]−H[Z | S] +H[A | S,Z] (Obj V2)

Again, second term ensures that the skill can be inferred from the current state, third term ensures that each
skill act as randomly as possible.

In the process, we recall another formula:

H(X) = −
∑
i

p (xi) log p (xi)

Using this formula in (Obj V2), this gives us:

F(θ) = H[A | S,Z] + Ez∼p(z),s∼π(z)[log p(z | s)]− Ez∼p(z)[log p(z)] (Obj V3)
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We note that p(z | s) is not readily available and that we have to find an alternative way to retrieve it. Now,
this (Obj V3) encourages us to build on from the work of D. Barber and F. Agakov in paper [4].
Since the mutual information is a measure of information transmission, the aim is to maximise a lower bound
on the mutual information.

Once again, we use the formulation of the mutual information we used earlier to obtain (Obj V2) :

I(S;Z) = H(Z)−H(Z|S)

In general, one wants to optimize the mutual information with respect to the parameters p(z | s) from
(Obj V3), p(z) is simply the fixed distribution. One needs to bound H(Z | S) suitably.
Recalling the the Kullback-Leibler bound in its general form

∑
x p(x | y) log p(x | y)−p(x | y) log q(x | y) ≥ 0

and applying it to our problem, yields :

I(S,Z) ≥ H(Z) + Ez∼p(z),s∼π(z)[log qϕ(z | s)]

where qϕ(z | s) is an arbitrary variational distribution, chosen to be a learnt discriminator in [1].

Finally, the Jensen inequality gives a variational lower bound G on the objective F

Variational Lower Bound G

F(θ) ≥ H[A | S,Z] + Ez∼p(z),s∼π(z) [log qϕ(z | s)− log p(z)] ≜ G(θ, ϕ) (VLB)

2.2 DIAYN algorithm
Now to learn (VLB), the idea behind DIAYN’s implementation is a two-stage cooperative game.
First, an agent experiments in an environment during steps_per_episode. During this experiment, the actions
undertaken by the agent are conditioned by a skill, sampled before the experiment. Then, the probability of
the sampled skill given by the state is approximated by the discriminator qϕ. This is one crucial component
of DIAYN : the discriminator attempts to tell skills apart. The intrinsic reward is then computed using the
probability given by the discriminator.
In a nutshell, the agent is rewarded for visiting states that are easy to discriminate and the discriminator is
updated to better infer the skill z from states visited.

Let us formalize those ideas by having a look at the pseudo-code below :

Algorithm 1: Diversity is All You Need (DIAYN) - as given in [1]
Input: fixed skill distribution Pskill (denoted p(z) in [1]), an environment for the agent

1 Initialize discriminator weights ϕ
2 while not converged do
3 Sample skill z ∼ Pskill and initial state s0 ∼ ρ0(s)
4 for 1 ≤ t ≤ steps_per_episode do
5 Sample action at ∼ πθ(at|st, z) from skill.
6 Step environment : st+1 ∼ p(st+1|st, at).
7 Compute qϕ(z|st+1) with discriminator.
8 Set skill reward rt = log qϕ(z|st+1)− log p(z)
9 Update policy (θ) to maximize rt with SAC.

10 Update discriminator (ϕ) with SGD.

Two things stand out from this pseudo-code:
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• Line 8, we note that the expectation term in (VLB) is maximized by replacing the task reward by a
pseudo-reward log qϕ(z|st+1)− log p(z)

• Line 9, the policy πθ(at|st, z) is learnt with soft actor-critic (SAC) [5] - as we will see in part 2.3, SAC
maximizes the policy’s entropy over actions which corresponds to the first term in G (VLB)

2.3 Soft Actor-Critic - [5]
The Soft Actor-Critic (SAC) is an off-policy actor-critic - in a nutshell, actor-critic amounts to a combina-
tion of policy-based (actor) and value-based (critic) approaches - deep RL algorithm based on the maximum
entropy framework.
Indeed, a crucial feature of SAC is the entropy regularization. The policy is trained to maximize a trade-off
between expected return and entropy. This very much recalls the famous exploration-exploitation trade-off.
Here increasing entropy produces a more thorough exploration - this can be linked to various comment we
made about DIAYN principles in part 2.1 for instance.

In short, SAC builds off of the regular RL optimization program (RL) introduced in 1.1 but adds an entropy
term to (RL) yielding the following augmented objective :

Maximum Entropy RL objective

J(π) = E
τ∼π

[R(τ)] + α
∑
t

H (π(·|st)) (MERL)

where α is called the temperature parameter and controls the relative importance of the entropy term
compared to the usual reward term

The Maximum Entropy framework has a wealth of advantages such as improved training stability and explo-
ration phase, that we review in more details in part 2.5. In addition, having a look at the (MERL) objective,
we understand the motivations behind the choice of SAC in the DIAYN framework. SAC maximizes the
policy’s entropy over actions which corresponds to the first term in G (VLB).

SAC can initially be derived from a maximum entropy variant of the policy iteration method - a general
framework to learn optimal maximum entropy policies that alternates between two steps: a policy evaluation
step and a policy improvement step.
The policy evaluation step boils down to computing a soft Q value iteratively (details can be found in [5])
and the improvement step amounts to update the policy towards the new Q-function while constraining the
updated policy in the set of tractable policies.

This method has the desirable property of converging to the optimal policy within a parametrized set of
tractable policies. The major issue is that the procedure relies on a tabular setting. The intuition behind
SAC is to extend it to the continuous setting that we are studying in this project.

The idea is to approximate the Q-function and the policy and to swap the initial evaluation-improvement
dynamic for a concurrent optimization process through stochastic gradient descent.

We now need to introduce three crucial functions :

• A parametrized state-value function Vψ(st) which approximate the soft value and is learnt through the
minimization of the squared difference between the prediction of the value function and the expected
prediction of the Q-function with the entropy of the policy, π :

JV (ψ) = Est∼D

[
1

2

(
Vψ (st)− Eat∼πϕ

[Qθ (st,at)− log πϕ (at | st)]
)2]

5



Deshayes & Dulcy Reinforcement Learning

where D is a replay buffer.
The gradient of the previous equation can be estimated with the following unbiased estimator:

∇̂ψJV (ψ) = ∇ψVψ (st) (Vψ (st)−Qθ (st,at) + log πϕ (at | st))

Using this state-value function, we can now introduce the remaining two central functions:

• A soft Q-function Qθ(st, at) parametrized by θ and which is learnt through the minimization of the
following soft Bellman residual

JQ(θ) = E(st,at)∼D

[
1

2

(
Qθ (st,at)− Q̂ (st,at)

)2
]

where Q̂ (st,at) = r (st,at) + γEst+1∼p
[
Vψ̄ (st+1)

]
Again, in a gradient-based learning fashion:

∇̂θJQ(θ) = ∇θQθ (at, st)
(
Qθ (st,at)− r (st,at)− γVψ̄ (st+1)

)
where ψ̄ is the exponentially moving average of the value network weights

• A tractable policy function πϕ(at|st) parametrized by ϕ which training centers on :

Jπ(ϕ) = Est∼D,ϵt∼N [log πϕ (fϕ (ϵt; st) | st)−Qθ (st, fϕ (ϵt; st))]

where at = fϕ (ϵt; st)
Finally, still in a gradient-based learning fashion:

∇̂ϕJπ(ϕ) = ∇ϕ log πϕ (at | st) + (∇at
log πϕ (at | st)−∇at

Q (st,at))∇ϕfϕ (ϵt; st)

That said, the whole procedure to update actor and critic are described in the full pseudo-code below:

Algorithm 2: Soft Actor-Critic - as given in [5]
Input: initialize parameter vectors ψ, ψ̄, θ, ϕ

1 for each iteration do
2 for each environment step do
3 at ∼ πϕ (at | st)
4 st+1 ∼ p (st+1 | st,at)
5 D ← D ∪ {(st,at, r (st,at) , st+1)}
6 for each gradient step do
7 ψ ← ψ − λV ∇̂ψJV (ψ)
8 θi ← θi − λQ∇̂θiJQ (θi) for i ∈ {1, 2}
9 ϕ← ϕ− λπ∇̂ϕJπ(ϕ)

10 ψ̄ ← τψ + (1− τ)ψ̄

2.4 Our DIAYN implementation
Our implementation can be found on GitHub here : https://github.com/remydeshayes/RL_DIAYN.git

As described in Appendix C of [1], the authors implemented DIAYN building off of the work done for SAC
in [5]. Regarding the discriminator, a look at the paper’s GitHub repository [6] shows that they used a two
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layer perceptron with 300 hidden units.

At first, we tried to use the code provided by the authors [6] to run some experiments. Unfortunately, the
Docker build was broken, and even after some trials, we have not succeeded in debugging the Dockerfile.
Furthermore, the authors used a SAC framework which is no longer maintained [7].

As a result, we decided to implement DIAYN using Gym, Stable Baselines 3 and PyTorch.
We used a SAC implementation from Stable Baselines 3 and developed a Gym wrapper to perform the nec-
essary steps to update the discriminator. The wrapper overwrites functions such as "step" or "reset" from
Gym to change the reward and perform necessary updates. It also adds some neat features to follow the
training such as a progress bar with useful information to observe the discriminator loss.
In addition, our implementation allows us to use alternative algorithms instead of SAC to train the agent if
needed.

As for SAC optimizes a stochastic policy in an off-policy way, the discriminator update procedure rests on a
replay buffer. On another note, we used Adam to update the discriminator. Like the authors, we augmented
the observation by concatenating a one-hot encoded version of z to the current state st.

The algorithm has been run on two Gym environments named Pendulum-V0 and MountainCarContinuous-
v0. We used an MLPolicy for both environments.

Following are the hyperparameters we used:

• α = 0.1 (temperature parameter as seen in 2.3)

• number of skills : 5

• total timesteps : 10000

• hidden layers dimension : 32

• learning rate for the discriminator : 1e-3

• learning rate for the actors and critics : 3e-4

For the sake of simplicity, throughout our implementation, we arbitrarily used 5 as for the number of skills
to learn.

2.4.1 Results

Each and every skill learnt both in the pendulum and mountain car environments of our DIAYN implemen-
tation are available in the following videos we uploaded on Youtube:

• link to the pendulum video : https://youtu.be/scjX7YhNthM

• link to the mountain car video : https://youtu.be/XRDxTBMpc8g

In what follows, we cherry-pick some of the skills to spotlight the diversity and distinguishability yielded by
DIAYN. First, we were able to balance the pendulum slighlty to the right on Figure 2a - this would seem
like a rather interesting skill to use as an initialization for the classical pendulum upper balance task. We
discuss the idea of using DIAYN as unsupervised pre-training in the following part 2.5. We were also able to
make almost symmetrical spins to the right - Figure 2b - and to the left - Figure 2c - at various speeds and
even to make full revolutions - this can be seen in the pendulum video.
Regarding the mountain car, we witnessed various car speeds and directions - we present some of them in
Figure 3. It is interesting to note that, although our car climbed the left hill to the top, it never crossed the
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(a) Stationary (b) Spinning to the right (c) Spinning to the left

Figure 2: Our pendulum developed various skills during training

(a) Climbing to the right (b) Climbing to the left (c) Standing still

Figure 3: Our mountain car developed various skills during training

finish line on the right. Again, this can be seen in the mountain car video.

We noticed that our implementation was robust to random seeds. Indeed, we observed very similar results
for each skill even after a change in the initialization. We discuss this empirically noted stability and more
in the following part 2.5.

2.5 DIAYN’s practical benefits and purposes
One great advantage of DIAYN is its robustness to random seed, its stability. Indeed, as introduced in part
2.2, DIAYN is a cooperative game which bypasses a great deal of issues associated to adversarial games
namely non-convergence, model collapse and diminished gradient which for instance frequently arise in the
2-player minimax game framework of GANs.

The task-agnostic aspect of DIAYN that we introduced in section 1 is especially beneficial to a handful of
RL problems that can build off of DIAYN’s outcomes:

• Unsupervised pre-training: the idea is to select DIAYN’s skill that has the highest reward for a specific
task and use it as an initialization to further fine tune it in a task-oriented context.

• Hierarchical RL (HRL): the HRL idea is to break up a complex task in multiple reusable easier tasks -
motion primitives. In practice, those methods have faced numerous problems such as having all motion
primitives trying to do the entire task.

• Imitation learning: the idea behind imitation learning is to follow expert demonstrations or hard-coded
agents.
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3 Final remarks and related work

Before wrapping up our project, we briefly lay out where DIAYN stands in the unsupervised RL literature
by introducing its most similar work, namely the Variational Intrinsic Control - [8].

3.1 Variational Intrinsic Control - [8]
DIAYN aspires to be the offspring of the Variational Intrinsic Control (VIC) introduced by K. Gregor, D.
Jimenez Rezende and D. Wierstra in [8] (2016). VIC’s purpose is very similar to DIAYN : providing an
algorithm to discover as many skills as possible using an information theoretic learning criterion. However,
DIAYN’s authors chose to fix the prior p(z) instead of learning it and allowed their discriminator to compute
probabilities at each state whereas VIC’s discriminator only do so in the final state.

3.1.1 Learning p(z)

Learning p(z) boils down to choosing a distribution which maximizes mutual information between states and
skills:

I(S,Z) = H(Z)−H(Z|S)

Let ptz(s) be the distribution over states induced by skill z at epoch t and lt(z) be an approximation of
E [log p(z|s)] - See part 2.1 for detailed discussion on p(z|s).
Using the method of Lagrange multipliers, DIAYN’s authors show in Appendix E of [1] that:

p(z) ∝ elt(z) (1)

Thus, using (1), one can learn p(z). However, the authors argue that the exponential of the entropy of skills
eH(Z), which is also the effective number of skills, drops by a factor of 10 when p(z) is learnt.
Learning p(z) instead of fixing it leads to a poorer skill diversity.

3.2 Final remarks
DIAYN is a genuinely engaging paper as it offers a general framework to train an agent in an unsupervised
manner with a reward not depending on the environment but only on the observations.
Moreover, any RL algorithm with entropy maximizing objective can be used as an alternative to the SAC
method.

Unfortunately, the paper lacks of theoretical results as underlined by the authors. Indeed, there is no
guarantee that there is convergence [1]. Still, the authors provide an extensive review of their algorithm
through their q&a format Experiments section.
Finally, further thoughts could be given to decide upon the number of skills one will use as an hyperparameter.
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