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Please note that this work was originally made in French and has been translated for sharing purposes

We ask our reader to note that this is a very early stage attempt to code in a distributed setting. Results are
not particularly striking as we do not distribute on enough variables. Furthermore, the execution times of our
distributed algorithms are worryingly unstable.

1 LASSO Regression

1.1 Brief introduction to the LASSO

LASSO is a regression analysis method that performs both variable selection and regularization in order
to enhance the prediction accuracy and interpretability of the resulting statistical model. The method is
especially useful when the number of covariates is well above the number of observations.

We recall the Lagrangian form of the LASSO:
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with y a vector of dependant variables, X the covariate matrix of size
n (number of observations) x p (number of covariates), 8 is a weight vector and A the regularization param-
eter.

There are many examples of subgradient methods to crack this problem - indeed the LASSO objective
function is non-differentiable.

In this project, we chose to focus on the famous Coordinate Descent algorithm by Friedman, Hastie and
Tibshirani in Regularization Paths for Generalized Linear Models via Coordinate Descent (2010)

1.2 Why is LASSO an interesting candidate in a distributed setting?

Over the years, the amount of available data has sky-rocketed to the extent that some training datasets
cannot be stored in a single machine memory.

In that case, traditional subgradient methods such as the Coordinate Descent algorithm can no longer be
used directly. Indeed, Python and R packages often kick off by loading the entire dataset on the RAM.

2 Implementations

2.1 Sanity Checks

To ensure that our functions were working properly we used Sk-Learn’s 8 vectors as a benchmark and cross-
checked the values obtained with our function.
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Among other usual sanity checks is looking over the "lasso path" i.e the different A values during the execution.

2.2 First shot

Firstly, we tried to code most of the content from scratch. We created the Baseline_Lasso function - inputs
are the covariates dataframe, alpha which is the A in the optimization program, the maximum number of
iterations allowed in the gradient descent process and finally intercept, a Boolean.

2.3 Scikit-learn

Secondly, we used Sk-Learn to code our LASSO regression. We assigned the Lasso function to an object
named reglasso - with arguments fit_intercept and normalize. Then, we fit it to the data in order to
find the best f(s.

2.4 Code optimization

For the sake of brevity, our LASSO implementation does not feature an intercept.

2.4.1 Cython

We coded 2 algorithms in Cython. For the first one (V1), we coded from scratch various computer algebra
functions in C. For the second algorithm (V2), we used the Blas library.

V1 - Cython "homemade"

We specified three computer algebra functions in C and a 4" one for the I; regularization:
e loss_c=y—y_ pred
e y_pred_c = X, X 3
e rho_c=3 " X; xy_pred;

Those functions are then passed into the C function fit1 which allows to perform the LASSO gradient
descent. This function compiled correctly but failed the [ sanity check. Indeed, after wrapping the function
in the Python function Cython_Lassol, the only output is a bunch of zeros. We reckon the problem must lie
in one of the functions round-up.

However, we still kept this implementation to compare running times between this "homemade" version and
the V2 Blas version.

V2 - Cython and Blas

Blas gathers various easy-to-use and efficient functions to perform computer algebra. From the library, we
used:

e dcopy(&n, &y[0], &inc, &beta_tmp[0], &inc)
to initialize the intercept

e daxpy(&n, &betaljl, &X[0, jl, &inc, &beta_tmp[0], &inc)
performs the product Xy, x Sy and compute the intercept

e ddot(&n, &beta_tmp[0], &inc, &X[0, jl, &inc)
update [ each iteration by computing the product X; x 3

As before, we wrap this C function £it2 in a Python function Cython_Lasso2 that reads C and initialize
variables.
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2.4.2 Parallel Cython

To distribute our 2 Cython algorithms, we first checked that everything compiled properly when using the
nogil argument. For this to work fine, the studied function must only include computer algebra and C
objects. Furthermore, we took great care in only specifying Python objects in the Python function wrapping
the C code.

In our project, we chose to distribute on the number of covariates - p in the optimization program introduced
in section 1 - as this is often seen as the most efficient method (Trofimov and Genkin, Distributed coordinate
descent for L1-reqularized logistic regression 2015).

We use the cython.parallel module and the prange function which allows to parallelize in the covariates
loop.

3 Comparison

We measured the execution time of the different algorithms with the timeit package and a function coded
by Prof. Dupré - check http://www.xavierdupre.fr/app/ensae_teaching_cs/helpsphinx3/notebooks/
cffi_linear_regression.html.

XS dataset: 1452 lines & 16 columns - housing dataset. Our target is to use the LASSO regression to predict
a property price depending on 15 numerical variables such as the number of bedrooms, the lot size, or the
number of cars one can fit in the garage.

XL dataset: 28506 lines & 11 columns - French YouTube dataset. Target is to predict the number of likes for
every given video from different variables such as release date.

Model XS XL
Numpy 4.480 | 6.810
SkLearn 0.005 | 0.045
Cython_homemade 0.016 | 0.350
Cython_Blas 0.002 | 0.041
Parallel_Cython_Homemade | 0.015 | 0.330
Parallel_Cython_Blas 0.002 | 0.045

Table 1: Execution Time in seconds

We notice that Sk-Learn is especially efficient. Our implementation from scratch backed by Numpy is over a
1000 times slower than the one available on Sk-Learn. The "homemade" Cython implementation cuts this
gap by a factor 10. Globally, our cython implementation using Blas performs well and yields times close to
Sk-Learn ones.

Comparing results from the XL and XS datasets underlines that our Cython implementation from scratch
does not scale up well. On the contrary, the Sk-Learn function execution times remains stable and it even
performs better than our Cython + Blas algorithm.

To conclude, again, we ask our reader to note that this is a very early stage attempt to code in a distributed
setting. Results are not particularly striking as we do not distribute on enough variables. Furthermore, the
execution times of our distributed algorithms are worryingly unstable.


http://www.xavierdupre.fr/app/ensae_teaching_cs/helpsphinx3/notebooks/cffi_linear_regression.html
http://www.xavierdupre.fr/app/ensae_teaching_cs/helpsphinx3/notebooks/cffi_linear_regression.html

Deshayes & Lauzeral Parallel Computing

Numpy

Cython_homemade

Parallel_Cython_Homemade

SkLearn

Parallel_Cython_Blas

Cython_Blas

102 107! 10°

Figure 1: Execution time on the XS dataset
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Figure 2: Execution time on the XL dataset - run 1
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Figure 3: Execution time on the XL dataset - run 2
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4 Future work
Working with a larger, LASSO-suited dataset would allow us to back our first opinions.

On another note, we only tried to distribute on the number of covariates, distributing on the number of
observations could yield some interesting reference point.

Finally, we chose a very specific method for subgradient descent, choosing another one might yield different
conclusions.
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