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When studying an unsupervised learning problem, data at hand supposedly follow a distribution Pr that we
want to discover and learn.

Section 1 introduces two approaches to tackle the problem of probability distribution learning and make a
brief introduction to a model - the GAN - that leverages one of these approaches. Then, section 2 builds on
the remarks made in the previous part and introduces the Wasserstein GAN. Section 3 and section 4 propose
an in-depth review of two GANs and their implementations1, namely the DCGAN and the CycleGAN.

1 Introduction

1.1 Intuitions on learning a probability distribution

1.1.1 The classical maximum likelihood approach

This approach leverages the probability densities. Namely, one defines a parametric family of densities
(Pθ)θ∈Rd and finds the density that maximizes the likelihood of the data at hand.
Asymptotically, when the real data distribution admits a density, this approach amounts to minimizing the
Kullback-Leibler divergence between Pr the real data distribution and Pθ the distribution of the density Pθ

However, minimizing the KL divergence can be challenging given that in rather common situations the KL di-
vergence can be undefined. This notably is the case when the topological spaces studied are of low dimensions.

In order to make the maximum likelihood approach work and overcome the above complications, the classical
trick is to add noise, sometimes a lot - which can be to the detriment of the models’ outputs - to the model
distribution Pθ.

1.1.2 Focusing on an alternative approach

These complications triggered the need for another option which resides in avoiding the estimation of the
density of the real data distribution.

The method is to define a random variable Z with a fixed distribution p(z) and then use it as an input for a
parametric function gθ : Z → X that generates samples following a distribution Pθ.
Varying the parameter θ will allow to change Pθ and make it as close as possible to the real distribution.

This approach has two major advantages over the one introduced in 1.1.1 :

1. The potential low dimensions of the spaces is no longer a problem
1notebook can be found on GitHub here or on Google Colab here
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2. Having samples at hand rather than density values is more convenient in various use-cases

As we will see in part 2.2, GANs, that we are studying in our project, leverage this alternative approach. Let
us then briefly introduce the GAN model in part 1.2.

1.2 Brief introduction to the GAN model

Definition : GAN
A Generative Adversarial Network is an unsupervised generative model where two networks
compete with each other in a game theory setting.

The first network is called a generator, it generates a sample. Its adversary, the other network, is
called a discriminator and tries to detect if a sample is genuine or if its an output from the generator.
The learning procedure can be modeled as a zero sum game - one model’s gain is the other’s loss.

The generator and the discriminator are multilayer perceptrons meaning they can be any usual deep learning
framework, independently. For instance, later in section 3, we will study in more detail a GAN implementa-
tion using CNN that are well suited to image processing and to our use case on the MNIST images dataset.

There is a lot of use-cases for GANs notably in image upsampling, artistic creation and reinforcement learn-
ing. Let us use of this use case, namely the art forger, to better understand the GAN’s operational principle.
A common analogy is that of an art forger - the generator - who tries to forge paintings and an investigator
- the discriminator - who tries to detect imitations.

Figure 1: GAN’s framework high level view - an interesting takeout from this
framework is that the generator has no knowledge of the real data, the only

message it will get is the discriminator’s output.

That said, training a GAN amounts to a simultaneous 2-players minimax game - the generator (G) tries to
fool the discriminator (D) and D tries to avoid being fooled by G.

Let us describe a little bit more this minimax game, this will be useful in later sections and notably in 4.

As D produces a binary fake vs. true classification, the binary-cross entropy is chosen as a cost function :

V = −(y log(D(x)) + (1− y) log(1− (D(x)))

where y is a class indicator - 0 for false and 1 for true - and D(x) is the probability to be true output by the
discriminator.
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Let us denote x̂ the false samples, D cost function is as follows :

V (D) = −[logD(x) + log(1−D(x̂))]

Now, adding G we get:
V (D) = −[logD(x) + log(1−D(G(z)))]

Eventually, as we are considering multiple observations we end up having :

V (D) = −
[
Ex∼pdata (x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))]

]
where z ∼ pz(z), the chosen distribution.

D optimization program amounts to minimizing its cost function:

max
D

V (D) = Ex∼pdata (x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))]

For its part, G tries to fool D, its cost function is thus the opposite of D’s one:

V (G) = −V (D)

and its optimization program is given by :

min
G

V (G) = Ez∼pz(z)[log(1−D(G(z)))]

Hence our 2-players minimax game between D and G:

min
G

max
D

V (G,D) = Ex∼pdata (x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))]

Now that we know a little bit more about the GAN framework, another thing to know is that training GANs
can usually suffer from three issues :

• Non-convergence: the model parameters oscillate, destabilize and never converge

• Mode collapse: the generator collapses which produces limited varieties of samples

• Diminished gradient: the discriminator gets too successful that the generator gradient vanishes and
learns nothing

Various architectures and alternatives have been proposed as a workaround to these problems. In this context,
section 2 introduces one very famous alternative the Wasserstein GAN.

2 Wasserstein GAN - [1]

In this section, part 2.1 will delve into the details of the method adopted by GANs and introduced in 1.1.2,
discussing the notion of distances between two probability distributions. Then, taking advantage of the
remarks made in part 2.1, part 2.2 introduces an alternative GAN algorithm - the WGAN - and its practical
benefits.
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2.1 The alternative approach in practice

2.1.1 Impact of the distance measure

Now, recalling the remarks made in 1.1.2, in order to use this new approach and appropriately train gθ, one
needs to define a distance measure between the model and real data distributions which amounts to a crucial
discussion on the various ways possible to define a distance ρ(Pθ,Pr).

Indeed, when trying to optimize the θ parameter it is best to have Pθ such that θ 7→ Pθ is continuous,
meaning that θt → θ yields Pθt → Pθ.
However, let us recall the definition of the convergence of a sequence of a probability distributions. (Pt)t∈N

converges if and only if there is a distribution P∞ such that ρ(Pt,P∞)→ 0, meaning that what we defined a
few lines above will come down to the definition of ρ.

In their paper, M. Arjovsky, S. Chintala and L. Bottou focus on four different ways to define a distance and
even more importantly they study non-negligible impact on sequences of probability distributions convergence.

The four famous distances considered
• The Total Variation distance :

δ(Pr,Pg) = sup
A∈Σ
|Pr(A)− Pg(A)| (TV)

where Σ denotes the subsets of a compact metric set

• The Kullback-Leibler divergence :

KL(Pr||Pg) =

∫
log

(
Pr(x)

Pg(x)

)
Pr(x)dµ(x) (KL)

where Pr and Pg admit densities as previously noted in 1.1.1

• The Jensen-Shannon divergence :

JS(Pr,Pg) = KL(Pr||Pm) +KL(Pg||Pm) (JS)

where Pm is the mixture Pr+Pg
2

• The Wasserstein distance :

W (Pr,Pg) = inf
γ∈Π(Pr,Pg)

E(x,y)∼γ [||x− y||] (W)

where Π(Pr,Pg) denotes the set of all joints distributions γ(x, y) with marginals Pr and Pg

2.1.2 Why choose the Wasserstein distance?

Intuitively, if each distribution is viewed as a unit of mass of earth stacked on a metric space, the measure is
the minimum cost of turning one pile into the other. This is supposed to be the product between the mass
of earth that needs to be moved and the distance it has to be moved.
This is why the Wasserstein distance is also known as the Earth Mover’s distance.

The motivation behind the choice of the Wasserstein distance as a loss function over the other distances
introduced above has roots in the very desirable properties that (W) has :
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1. Under mild assumption over gθ introduced in 1.1.2, the Wasserstein distance has guarantees of continuity
and differentiability which is not the case for the Jensen-Shannon divergence for example

2. Any sequence of probability distribution that would converge under (KL), (JS) and (TV) would also
converge under (W), meaning that the Wasserstein distance induces a weaker topology i.e makes it
easier for a sequence of distribution to converge

Those properties are especially useful notably in the problematic situation introduced in 1.1.1, namely when
the spaces at hand are of low dimensions.
This makes the Wasserstein distance a great and sound choice in that setup.

Now that the choice is made, the question is how to optimize the Wasserstein distance given that (W) is
intractable.
The authors will introduce a tractable approximation obtained through the Kantorovich-Rubinstein duality
which states that :

W (Pr,Pθ) = sup
||f ||L≤1

Ex∼Pr [f(x)]− Ex∼Pθ [f(x)] (W-KRd)

where the supremum is over all the 1-Lipschitz functions f
Indeed, under the same mild assumptions mentioned earlier over gθ, (W-KRd) admits a solution - the term
becomes a max

||f ||L≤1
- and :

∇θW (Pr,Pθ) = −Ez∼p(z)[∇θf(gθ(z))]

2.2 Wasserstein GAN

2.2.1 The algorithm

Now let us recall the GAN architecture introduced in part 1.2, the GAN’s field contribution of M. Arjovsky, S.
Chintala and L. Bottou is to propose an alternative GAN based on an alternative way to train the generator
to ultimately better approximate Pr.
Indeed, recalling the approach introduced in 2.1, training the generator should result in minimizing a dis-
tance. That is why in the Wasserstein GAN, generator updates now centers around the use of a critic that
outputs a quality score of a distance approximation rather than using strong discriminator-made classification.

More precisely, coming back to the remarks made at the end of 2.1.2, the focus is now on finding an approx-
imation for the function f solving (W-KRd).
To do so, the authors train a neural network with weights w lying in a compact space W enforced by weights
clipping - this is made to ensure that the Lipschitz condition on critic functions (fw)w∈W is met - and then
backprop through Ez∼p(z)[∇θfw(gθ(z))]

Having introduce the general idea, let us now have a look at the pseudo-code of the algorithm :

Parameters to be set:

• α, the learning rate

• c, the clipping parameter

• m, the batch size

• ncritic , the number of iterations of the critic per generator iteration

Initialisation:

• w0, initial critic parameters
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• θ0, initial generator’s parameters

Figure 2: WGAN algorithm - as introduced earlier, the for loop from line 2 to 8 stands
for the critic’s training, lines 9 to 11 represents the subsequent generator update

2.2.2 The practical benefits

The WGAN has two main advantages compared to regular GAN’s implementations.

1. The loss of the WGAN shows properties of convergence. Indeed, the design of the WGAN - Figure 2 -
implies that the loss of the algorithm is an approximation of the Wasserstein distance up to a constant
meaning that the loss is directly linked to the quality of the generated samples.

2. The WGAN has a more stable training and supports much more model architecture flexibility.
Recall part 2.1.2, the Wasserstein distance has guarantees of continuity and differentiability which
means that one can train the critic until optimality yielding dependable results on the gradient of the
Wasserstein thus providing useful gradient information to update the generator and preventing rather
frequent GAN’s issue where generators fail to produce a reasonable variety of samples - a phenomena
called mode collapse.

In their paper [1], M. Arjovsky, S. Chintala and L. Bottou uses another famous implementation of the GAN
- the DCGAN - as a baseline to compare and assess the WGAN benefits. The DCGAN is now explored in
further details in section 3.

3 Unsupervised Representation Learning with Deep Convolutional
Generative Adversarial Networks - [2]

In this section, in-depth study of the DCGAN is the opportunity to introduce a famous type of GAN with a
convolutional architecture and to initiate our implementation work with an image generation task based on
the MNIST dataset in part 3.2.

The idea behind the DCGAN is to bridge the gap between very popular and successful supervised computer
vision CNN tasks and unsupervised tasks. However, scaling GANs with a CNN architecture is no easy task
and has often yielded disappointing results.

The main contribution from A. Radford, L. Metz and S. Chintala is introducing a GAN using a precisely
delimited family of CNN architectures that observes specific guidelines - part 3.1 - and gives in practical
benefits studied in 3.3.
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3.1 Architecture
Let us describe these guidelines.

• Discard fully connected layers on top of convolutional features. The technique used here is based on
the Global Average Pooling method which is more native to the convolution structure by enforcing
correspondences between feature maps and categories.

For the discriminator :

• Replacing any pooling layers with strided - step size of the kernel when traversing the image - convo-
lutions

• Using Batch Normalization to all layers except the input layer to avoid model instability

• Using LeakyReLU activation for all layer

For the generator :

• Replacing any pooling layers with fractional-strided convolutions - also called transposed convolutions,
yielding an all convolutional net

• Using Batch Normalization to all layers except the output layer to avoid model instability

• Using ReLU activation for all layers except for the output, which uses tanh

Now that we have a high level view of the architecture used for the DCGAN, let us delve into more details
by implementing it in part 3.2.

3.2 DCGAN Implementation

3.2.1 Discriminator

Regarding the discriminator architecture we decided to start from the components depicted in Figure 3
and add it a twist. Namely, we added a convolutional layer and we increased the number of filters in the
convolutional layers to fit with the original implementation.
What’s more, we used a LeakyReLU instead of ReLU for its better performance on our use-case - part 3.2.4.

Figure 3: Example of a Discriminator architecture

3.2.2 Generator

We followed a similar procedure, starting from Figure 4, for the discriminator which basically does the
opposite job.
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Figure 4: Example of a generator architecture

3.2.3 Training

Now that the framework is set up, we go on with the training. We trained the DCGAN with an Adam
optimizer with a learning rate of 10−4 and β = 0.5.

Here is the pseudo-code we used:

DCGAN Training Loop
1: Draw m training examples

{
x(1), . . . , x(m)

}
from the data distribution pdata

2: Draw m noise samples
{
z(1), . . . , z(m)

}
from the noise distribution pz

3: Generate fake images from the noise: G
(
z(i)
)
for i ∈ {1, . . .m}

4: Compute the discriminator loss:

J (D) = 1
2m

∑m
i=1

[
logD

(
x(i)
)]

+ 1
2m

∑m
i=1

[
log
(
1−D

(
G
(
z(i)
)))]

5: Generate fake images from the noise: G
(
z(i)
)
for i ∈ {1, . . .m}

6: Compute the generator loss:

J (G) = 1
m

∑m
i=1

[
logD

(
G
(
z(i)
))]

Now let us have a look at the results we got from our implementation on our MNIST image generation
use-case.

3.2.4 Results

Figure 5 page 14 shows how the DCGAN generator is learning to generate the MNIST images.

Indeed, nothing precise can be derived from the first epoch but epoch 10 is much more convincing and the
generator is able to produce what could be real written numbers.
In the meantime the losses of the discriminator and the generator are decreasing which means the DCGAN
is learning properly.

Not only this framework architecture has given great result for our experiment but also great practical benefits
in general. We are now reviewing them in part 3.3.

3.3 The practical benefits
Three benefits are usually taken from the implementation of the DCGAN

• The DCGAN is more stable to train in most settings and does not require heavy parameter tuning

• The DCGAN showed very competitive performance with other unsupervised algorithms
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• Latent space has some valuable local linear properties allowing easy semantic quality manipulations of
the generated sample - this is very similar to NLP vector as in Word2Vec for instance

Next section will be dedicated to another use-case leveraging the GAN machinery, namely Image-to-Image
Translation in an unsupervised setting.

4 Unpaired Image-to-Image Translation using Cycle-Consistent Ad-
versarial Networks - [3]

It is very interesting to note that the CycleGAN, as the DCGAN - all things being equal - is trying to bridge
the gap between a very successful supervised computer vision tasks and the same unsupervised task.
The motivation behind the need for an unsupervised setting in image translation lies in the fact that paired
images are very scarce resources.

The main contribution from Jun-Yan Zhu, Taesung Park, Phillip Isola and Alexei A. Efros is introducing a
method - the CycleGAN - that captures the special characteristics of one image collection and translate them
to the other image collection without ever requiring paired images. Part 4.1 will introduce the modelling
needed to perform such a task and we will delve into details of the implementation in part 4.2.

4.1 CycleGAN modelling
The task that the CycleGAN is tackling is translating an image from a data collection X to a target data
collection Y in the absence of paired examples.
Thus, the model aims at learning a mapping functions G : X 7→ Y which output ŷ = G(x) perfectly mimics
an image from Y .

Again, as we have seen multiply times, being in an unsupervised setting, this amounts to learning a distri-
bution.
Now, the issue is that mappings G inducing the same probability distribution than Y are not unique which
means that an input x might not be matched with a meaningful corresponding y.

A workaround this problem is found using regularization through transitivity, more precisely using cycle
consistency.
The concept is illustrated in paper [3]: if a sentence in English is translated into French, the procedure to
translate it back into English should produce the exact same initial English sentence.

Introducing a second mapping F : Y 7→ X, the concept is enforced through checking that F and G are indeed
inverse functions.

That said we now introduce the corresponding losses that we will then use in our implementation in part 4.2.

4.1.1 Adversarial losses

Recalling, part 1.2 and the introduction on GANs, here we have two traditional GAN losses.

One of them is thus given by :

LGAN (G,DY , X, Y ) = Ey∼pdata(y)

[
logDY (y)

]
+ Ex∼pdata(x)

[
log(1−DY (G(x)))

]
where DY is the discriminator for the generator G
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4.1.2 Cycle Consistency loss

The Cycle Consistency loss is given by :

Lcyc(G,F ) = Ex∼pdata(x)

[
||F (G(x)− x||1

]
+ Ey∼pdata(y)

[
||G(F (y)− y||1

]
The full objective is the sum of those three losses controlled with a parameter λ.‘

Now that we have a deeper knowledge of the CycleGAN framework, let us delve into more details by imple-
menting it in part 4.2

4.2 CycleGAN Implementation

4.2.1 Blocks and Generators

The two generators of our CycleGAN are made of different blocks:

• First the downsample block that will encode the input using a convolutional layer ;

• Then the residual block that transforms the input but keeps the same output size ;

• Finally the upsample that does the opposite job and decodes the input with a transpose convolutional
layer.

We decided to start from the components depicted in Figure 6 and added 2 downsample blocks, 9 residual
blocks and 2 upsample blocks.

Figure 6: Example of a generator architecture for a cycleGAN

4.2.2 Discriminators

Regarding the discriminators we followed the same procedure as for the DCGAN.

4.2.3 Training

Regarding training we used batch sizes of 1. Instead of the Binary Cross Entropy Loss we decided to use the
Mean Squared Error who showed much better results.
The cycle loss was implemented with the Mean Absolute Error.

Recalling part 4.1, here is the pseudo-code we used :
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CycleGAN Training Loop
1: Draw m training examples

{
x(1), . . . , x(m)

}
from domain X

2: Draw m training examples
{
y(1), . . . , y(m)

}
from domain Y

3: Compute the DXdiscriminators loss:

J (DX) = 1
m

∑m
i=1

(
DX

(
x(i)
)
− 1
)2

+ 1
n

∑n
j=1

(
DX

(
GY→X

(
y(j)
)))2

4: Compute the DY discriminators loss:

J (DY ) = 1
m

∑m
i=1

(
DY

(
x(i)
)
− 1
)2

+ 1
n

∑n
j=1

(
DY

(
GX→Y

(
y(j)
)))2

6: Update the discriminators
7: Compute the Y → X generator loss:

J (GY→X) = 1
n

∑n
j=1

(
DX

(
GY→X

(
y(j)
))
− 1
)2

+ λcycle J (Y→X→Y )
cycle

8: Compute the X → Y generator loss:

J (GX→Y ) = 1
m

∑m
i=1

(
DY

(
GX→Y

(
x(i)
))
− 1
)2

+ λcycle J (X→Y→X)
cycle

9: Update the generators

4.3 Results
Figure 7 page 14 shows the CycleGAN learning evolution through epochs.

The main challenge to translate images from USPS to MNIST lies in the "font" of the numbers.
The MNIST dataset numbers are rather thin while they are larger for the USPS dataset. Also, USPS number
are a slightly blurrier than the MNIST ones.

The CycleGAN has clearly adapted to these differences. During epoch 12 it took the MNIST images and
enlarged the lines while for the USPS image it reduced the line and made it clearer.
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(a) Epoch 1 (b) Epoch 2 (c) Epoch 3

(d) Epoch 4 (e) Epoch 5 (f) Epoch 6

(g) Epoch 7 (h) Epoch 8 (i) Epoch 9

(j) Epoch 10

Figure 5: Evolution of the DCGAN through training13
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(a) Epoch 1: MNIST to
USPS

(b) Epoch 1: USPS to
MNIST

(c) Epoch 4: MNIST to
USPS

(d) Epoch 4: USPS to
MNIST

(e) Epoch 7: MNIST to
USPS

(f) Epoch 7: USPS to
MNIST

(g) Epoch 8: MNIST to
USPS

(h) Epoch 8: USPS to
MNIST

(i) Epoch 11: MNIST
to USPS

(j) Epoch 11: USPS to
MNIST

(k) Epoch 12: MNIST
to USPS

(l) Epoch 12: USPS to
MNIST

Figure 7: Evolution of the cycleGAN through training
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